Find the eigenvalues and eigenvectors of the matrix

Introduction To Eigenvalues And Eigenvectors

A rectangular arrangement of numbers in the form of rows and columns is known as a matrix. In this article, we will discuss Eigenvalues and Eigenvectors Problems and Solutions.

Consider a square matrix n × n. If X is the non-trivial column vector solution of the matrix equation AX = λX, where λ is a scalar, then X is the eigenvector of matrix A and the corresponding value of λ is the eigenvalue of matrix A.

Suppose the matrix equation is written as A X – λ X = 0. Let I be the n × n identity matrix.

If I X is substituted by X in the equation above, we obtain

A X – λ I X = 0.

The equation is rewritten as (A – λ I) X = 0.

The equation above consists of non-trivial solutions, if and only if, the determinant value of the matrix is 0. The characteristic equation of A is Det (A – λ I) = 0. ‘A’ being an n × n matrix, if (A – λ I) is expanded, (A – λ I) will be the characteristic polynomial of A because it’s degree is n.

Properties Of Eigenvalues

Let A be a matrix with eigenvalues λ1, λ2,…., λn.

The following are the properties of eigenvalues.

(1) The trace of A, defined as the sum of its diagonal elements, is also the sum of all eigenvalues,

\(\begin{array}{l}{\displaystyle {tr} (A)=\sum _{i=1}^{n}a_{ii}=\sum _{i=1}^{n}\lambda _{i}=\lambda _{1}+\lambda _{2}+\cdots +\lambda _{n}.}\end{array} \)

(2) The determinant of A is the product of all its eigenvalues,

\(\begin{array}{l}{\displaystyle \det(A)=\prod _{i=1}^{n}\lambda _{i}=\lambda _{1}\lambda _{2}\cdots \lambda _{n}.}\end{array} \)

(3) The eigenvalues of the kth power of A; that is the eigenvalues of Ak, for any positive integer k, are

\(\begin{array}{l}{\displaystyle \lambda _{1}^{k},…,\lambda _{n}^{k}}.\end{array} \)

.

(4) The matrix A is invertible if and only if every eigenvalue is nonzero.

(5) If A is invertible, then the eigenvalues of A-1 are

\(\begin{array}{l}{\displaystyle {\frac {1}{\lambda _{1}}},…,{\frac {1}{\lambda _{n}}}}\end{array} \)

and each eigenvalue’s geometric multiplicity coincides. The characteristic polynomial of the inverse is the reciprocal polynomial of the original, the eigenvalues share the same algebraic multiplicity.

(6) If A is equal to its conjugate transpose, or equivalently if A is Hermitian, then every eigenvalue is real. The same is true of any symmetric real matrix.

(7) If A is not only Hermitian but also positive-definite, positive-semidefinite, negative-definite, or negative-semidefinite, then every eigenvalue is positive, non-negative, negative, or non-positive, respectively.

(8) If A is unitary, every eigenvalue has absolute value |λi| = 1.

(9) If A is a n×n matrix and {λ1, λ2,…., λk} are its eigenvalues, then the eigenvalues of the matrix I + A (where I is the identity matrix) are {λ1+ 1, λ2+1,…., λk+1}.

Also Read:

Eigenvectors of a Matrix

Adjoint and Inverse of a Matrix

Normalized and Decomposition of Eigenvectors

Eigenvalues And Eigenvectors Solved Problems

Example 1: Find the eigenvalues and eigenvectors of the following matrix.

Solution:

Find the eigenvalues and eigenvectors of the matrix

Example 2: Find all eigenvalues and corresponding eigenvectors for the matrix A if

\(\begin{array}{l}\begin{pmatrix}2&-3&0\\ \:\:2&-5&0\\ \:\:0&0&3\end{pmatrix}\end{array} \)

Solution: 

\(\begin{array}{l}\det \left(\begin{pmatrix}2&-3&0\\ 2&-5&0\\ 0&0&3\end{pmatrix}-λ\begin{pmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{pmatrix}\right)\\\begin{pmatrix}2&-3&0\\ 2&-5&0\\ 0&0&3\end{pmatrix}-λ\begin{pmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{pmatrix}\\λ\begin{pmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{pmatrix}=\begin{pmatrix}λ&0&0\\ 0&λ&0\\ 0&0&λ\end{pmatrix}\\=\begin{pmatrix}2&-3&0\\ 2&-5&0\\ 0&0&3\end{pmatrix}-\begin{pmatrix}λ&0&0\\ 0&λ&0\\ 0&0&λ\end{pmatrix}\\=\begin{pmatrix}2-λ&-3&0\\ 2&-5-λ&0\\ 0&0&3-λ\end{pmatrix}\\=\det \begin{pmatrix}2-λ&-3&0\\ 2&-5-λ&0\\ 0&0&3-λ\end{pmatrix}\\=\left(2-λ\right)\det \begin{pmatrix}-5-λ&0\\ 0&3-λ\end{pmatrix}-\left(-3\right)\det \begin{pmatrix}2&0\\ 0&3-λ\end{pmatrix}+0\cdot \det \begin{pmatrix}2&-5-λ\\ 0&0\end{pmatrix}\\=\left(2-λ\right)\left(λ^2+2λ-15\right)-\left(-3\right)\cdot \:2\left(-λ+3\right)+0\cdot \:0\\=-λ^3+13λ-12\\-λ^3+13λ-12=0\\-\left(λ-1\right)\left(λ-3\right)\left(λ+4\right)=0\\\mathrm{The\:eigenvalues\:are:}\\λ=1,\:λ=3,\:λ=-4\\\mathrm{Eigenvectors\:for\:}λ=1\\\begin{pmatrix}2&-3&0\\ 2&-5&0\\ 0&0&3\end{pmatrix}-1\cdot \begin{pmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{pmatrix}=\begin{pmatrix}1&-3&0\\ 2&-6&0\\ 0&0&2\end{pmatrix}\\\left(A-1I\right)\begin{pmatrix}x\\ y\\ z\end{pmatrix}=\begin{pmatrix}1&-3&0\\ 0&0&1\\ 0&0&0\end{pmatrix}\begin{pmatrix}x\\ y\\ z\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\end{pmatrix}\\\begin{Bmatrix}x-3y=0\\ z=0\end{Bmatrix}\\Isolate\\\begin{Bmatrix}z=0\\ x=3y\end{Bmatrix}\\\mathrm{Plug\:into\:}\begin{pmatrix}x\\ y\\ z\end{pmatrix}\\η=\begin{pmatrix}3y\\ y\\ 0\end{pmatrix}\space\space\:y\ne \:0\\\mathrm{Let\:}y=1\\\begin{pmatrix}3\\ 1\\ 0\end{pmatrix}\\Similarly\\\mathrm{Eigenvectors\:for\:}λ=3:\quad \begin{pmatrix}0\\ 0\\ 1\end{pmatrix}\\\mathrm{Eigenvectors\:for\:}λ=-4:\quad \begin{pmatrix}1\\ 2\\ 0\end{pmatrix}\\\mathrm{The\:eigenvectors\:for\:}\begin{pmatrix}2&-3&0\\ 2&-5&0\\ 0&0&3\end{pmatrix}\\=\begin{pmatrix}3\\ 1\\ 0\end{pmatrix},\:\begin{pmatrix}0\\ 0\\ 1\end{pmatrix},\:\begin{pmatrix}1\\ 2\\ 0\end{pmatrix}\\\end{array} \)

Example 3: Consider the matrix

Find the eigenvalues and eigenvectors of the matrix

for some variable ‘a’. Find all values of ‘a’ which will prove that A has eigenvalues 0, 3, and −3.

Solution:

Let p (t) be the characteristic polynomial of A, i.e. let p (t) = det (A − tI) = 0. By expanding along the second column of A − tI, we can obtain the equation

Find the eigenvalues and eigenvectors of the matrix

= (3 − t) [(−2 −t) (−1 − t) − 4] + 2[(−2 − t) a + 5]

= (3 − t) (2 + t + 2t + t2 −4) + 2 (−2a − ta + 5)

= (3 − t) (t2 + 3t − 2) + (−4a −2ta + 10)

= 3t2 + 9t − 6 − t3 − 3t2 + 2t − 4a − 2ta + 10

= −t3 + 11t − 2ta + 4 − 4a

= −t3 + (11 − 2a) t + 4 − 4a

For the eigenvalues of A to be 0, 3 and −3, the characteristic polynomial p (t) must have roots at t = 0, 3, −3. This implies p (t) = –t (t − 3) (t + 3) =–t(t2 − 9) = –t3 + 9t

Therefore, −t3 + (11 − 2a) t + 4 − 4a = −t3 + 9t.

For this equation to hold, the constant terms on the left and right-hand sides of the above equation must be equal. This means that 4 − 4a = 0, which implies a = 1.

Hence, A has eigenvalues 0, 3, −3 precisely when a = 1.

Example 4: Find the eigenvalues and eigenvectors of

\(\begin{array}{l}\begin{pmatrix}2&0&0\\ \:0&3&4\\ \:0&4&9\end{pmatrix}\end{array} \)

Solution: 

\(\begin{array}{l}\det \left(\begin{pmatrix}2&0&0\\ 0&3&4\\ 0&4&9\end{pmatrix}-λ\begin{pmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{pmatrix}\right)\\\begin{pmatrix}2&0&0\\ 0&3&4\\ 0&4&9\end{pmatrix}-λ\begin{pmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{pmatrix}\\λ\begin{pmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{pmatrix}=\begin{pmatrix}λ&0&0\\ 0&λ&0\\ 0&0&λ\end{pmatrix}\\=\begin{pmatrix}2&0&0\\ 0&3&4\\ 0&4&9\end{pmatrix}-\begin{pmatrix}λ&0&0\\ 0&λ&0\\ 0&0&λ\end{pmatrix}\\=\begin{pmatrix}2-λ&0&0\\ 0&3-λ&4\\ 0&4&9-λ\end{pmatrix}\\=\det \begin{pmatrix}2-λ&0&0\\ 0&3-λ&4\\ 0&4&9-λ\end{pmatrix}\\=\left(2-λ\right)\det \begin{pmatrix}3-λ&4\\ 4&9-λ\end{pmatrix}-0\cdot \det \begin{pmatrix}0&4\\ 0&9-λ\end{pmatrix}+0\cdot \det \begin{pmatrix}0&3-λ\\ 0&4\end{pmatrix}\\=\left(2-λ\right)\left(λ^2-12λ+11\right)-0\cdot \:0+0\cdot \:0\\=-λ^3+14λ^2-35λ+22\\-λ^3+14λ^2-35λ+22=0\\-\left(λ-1\right)\left(λ-2\right)\left(λ-11\right)=0\\\mathrm{The\:eigenvalues\:are:}\\λ=1,\:λ=2,\:λ=11\\\mathrm{Eigenvectors\:for\:}λ=1\\\begin{pmatrix}2&0&0\\ 0&3&4\\ 0&4&9\end{pmatrix}-1\cdot \begin{pmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{pmatrix}=\begin{pmatrix}1&0&0\\ 0&2&4\\ 0&4&8\end{pmatrix}\\\left(A-1I\right)\begin{pmatrix}x\\ y\\ z\end{pmatrix}=\begin{pmatrix}1&0&0\\ 0&1&2\\ 0&0&0\end{pmatrix}\begin{pmatrix}x\\ y\\ z\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\end{pmatrix}\\\begin{Bmatrix}x=0\\ y+2z=0\end{Bmatrix}\\Isolate\\\begin{Bmatrix}x=0\\ y=-2z\end{Bmatrix}\\\mathrm{Plug\:into\:}\begin{pmatrix}x\\ y\\ z\end{pmatrix}\\η=\begin{pmatrix}0\\ -2z\\ z\end{pmatrix}\space\space\:z\ne \:0\\\mathrm{Let\:}z=1\\\begin{pmatrix}0\\ -2\\ 1\end{pmatrix}\\Similarly\\\mathrm{Eigenvectors\:for\:}λ=2:\quad \begin{pmatrix}1\\ 0\\ 0\end{pmatrix}\\\mathrm{Eigenvectors\:for\:}λ=11:\quad \begin{pmatrix}0\\ 1\\ 2\end{pmatrix}\\\mathrm{The\:eigenvectors\:for\:}\begin{pmatrix}2&0&0\\ 0&3&4\\ 0&4&9\end{pmatrix}\\=\begin{pmatrix}0\\ -2\\ 1\end{pmatrix},\:\begin{pmatrix}1\\ 0\\ 0\end{pmatrix},\:\begin{pmatrix}0\\ 1\\ 2\end{pmatrix}\\\end{array} \)

  

Frequently Asked Questions

What do you mean by Eigenvalues?

Eigenvalues are the special set of scalar values associated with the set of linear equations in the matrix equations.

Can Eigenvalue be zero?

Yes, Eigenvalue can be zero.

Can a singular matrix have Eigenvalues?

Every singular matrix has a 0 eigenvalue.

How to find the Eigenvalues of a square matrix A?

Use the equation det(A-λI) = 0 and solve for λ. Determine all the possible values of λ which are the required eigenvalues of matrix A.

How do you find eigenvalues and eigenvectors of a 3x3 matrix?

Eigenvalues and Eigenvectors of a 3 by 3 matrix.
If non-zero e is an eigenvector of the 3 by 3 matrix A, then..
for some scalar . ... .
meaning that the eigenvalues are 3, −5 and 6..
for each eigenvalue . ... .
For convenience, we can scale up by a factor of 2, to get..
Once again, we can scale up by a factor of 2, to get..

How do you find the eigenvectors of a 2x2 matrix?

How to find the eigenvalues and eigenvectors of a 2x2 matrix.
Set up the characteristic equation, using |A − λI| = 0..
Solve the characteristic equation, giving us the eigenvalues (2 eigenvalues for a 2x2 system).
Substitute the eigenvalues into the two equations given by A − λI..

How do you find eigenvalues of a matrix?

How do you determine the Eigenvalues of a square matrix A? We use the equation det(A – λI) = 0 and solve for λ. Calculate all the possible values of λ, which are the required eigenvalues of matrix A.